mkrawimg/device.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
//! Module handling various procedures for a specific device, and the device specification itself.
//!
//! Adding support for new device
//! =============================
//!
//! Adding a new device involves the following steps:
//!
//! 1. Gather basic device information, such as its model name, vendor, and a unique ID.
//! 2. Determine the necessary Board Support Package (BSP) packages to be installed.
//! 3. Determine the device's partition layout (partition table type, number of partitions, sizes, starting positions, filesystems, etc.). See [Partition Specification] for details.
//! 4. Determine how to apply or flash bootloaders to the target image. This is often common across devices using U-Boot. See [Bootloaders] for details.
//! 5. Identify any additional image preparation steps. These can be implemented in a post-installation script.
//!
//! Once you have this information, create a [device-level directory in the registry] and write the [device specification file].
//!
//! ### Testing
//!
//! 1. run the built-in validity checks:
//!
//! ```shell
//! ./target/release/mkrawimg check
//! ```
//!
//! If there are errors in your device specification file, correct them based on the program's output. Repeat this step until no errors are reported.
//!
//! 2. after all errors are fixed, run a test build:
//!
//! ```
//! ./target/release/mkrawimg build -V base -- your-device-ID
//! ```
//!
//! 3. Flash the image to your device to confirm that the image is bootable.
//! 4. Submit a Pull Request to add the device to this project.
//!
//! [Partition Specification]: crate::partition::PartitionSpec
//! [Bootloaders]: crate::bootloader::BootloaderSpec
//! [device-level directory in the registry]: crate::registry::DeviceRegistry
//! [device specification file]: crate::device::DeviceSpec
use std::{
collections::HashMap,
ffi::OsStr,
fs::{self, File},
io::Write,
path::{Path, PathBuf},
};
use crate::{
bootloader::BootloaderSpec,
context::{ImageContext, ImageVariant},
filesystem::FilesystemType,
partition::{PartitionSpec, PartitionType, PartitionUsage},
pm::Distro,
};
use anyhow::{bail, Context, Result};
use clap::ValueEnum;
use gptman::{GPTPartitionEntry, GPT};
use log::debug;
use mbrman::{MBRPartitionEntry, CHS, MBR};
use serde::{Deserialize, Serialize};
use uuid::Uuid;
const FORBIDDEN_CHARS: &[char] = &['\'', '"', '\\', '/', '{', '}', '[', ']', '!', '`', '*', '&'];
#[derive(Copy, Clone, Debug, Serialize, Deserialize, PartialEq, Eq, strum::Display)]
#[serde(rename_all = "lowercase")]
// It is strange to see MBR as Mbr, GPT as Gpt.
#[allow(clippy::upper_case_acronyms)]
pub enum PartitionMapType {
#[serde(alias = "dos")]
MBR,
GPT,
}
#[derive(
Copy, Clone, Debug, strum::Display, Deserialize, PartialEq, Eq, PartialOrd, Ord, ValueEnum,
)]
#[serde(rename_all(deserialize = "snake_case"))]
pub enum DeviceArch {
// Tier 1 architectures
/// x86-64
Amd64,
/// AArch64
Arm64,
/// LoongArch64
LoongArch64,
// Tier 2 architectures
/// IBM POWER 8 and up (Little Endian)
Ppc64el,
/// MIPS Loongson CPUs (Loongson 3, mips64el)
Loongson3,
/// 64-bit RISC-V with Extension C and G
Riscv64,
/// 64-Bit MIPS Release 6
Mips64r6el,
}
/// Device Specification
/// ====================
///
/// A device specification represents a specific model of device in the form of a specification file named `device.toml`. Most information defined in the device specification are used to build OS images for this device.
///
/// It describes various aspects of the device:
///
/// - How many partition the image of this device may contain, their sizes, filesystems.
/// - How many BSP packages for this device should be installed in addition to the standard system distribution.
/// - Whether the image of the device must have bootloaders applied, and how to apply them.
/// - Basic information, like its ID, vendor and model name.
///
/// It must be placed under the device-level directory of the [device registry].
///
/// An optional [post-installation script](#post-installation) can be placed in the device-level directory to finalize the installation. This script runs after all BSP packages are installed, in the target OS.
///
/// One or more optional [bootloader scripts] can be placed in the device-level directory. Bootloader scripts run after the post-installation script, and also in the target OS.
///
/// Syntax
/// ======
///
/// The device specification uses the TOML format.
///
/// Fields
/// ======
///
/// `id` - Device ID
/// ----------------
///
/// A string which identifies a specific device. Must be unique across the entire registry. It can be a combination of letters (`a-z`, `A-Z`), digits (`0-9`), hyphens (`-`) and underscores (`_`).
///
/// ```toml
/// id = "rpi-9"
/// ```
///
/// `aliases` - Device Aliases (Optional)
/// -------------------------------------
///
/// A list of strings that can also identify this specific device. Must be unique across the entire registry. Aliases follows the same naming restrictions.
///
/// ```toml
/// alias = ["pi9", "pi9b"]
/// ```
///
/// `vendor` - Device Vendor
/// ------------------------
///
/// A string that identifies the vendor of the device. Should be as same as the vendor-level directory name.
///
/// ```toml
/// vendor = "raspberrypi"
/// ```
///
/// `arch` - Device CPU Architecture
/// --------------------------------
///
/// A string defines the architecture of the CPU used by this device.
///
/// Possible values:
///
/// - `"amd64"`: x86-64 CPU.
/// - `"arm64"`: ARM AArch64 CPU.
/// - `"loongarch64"`: LoongArch64 CPU.
/// - `"riscv64"`: 64-Bit RISC-V CPU.
/// - `"ppc64el"`: IBM POWER 8 and up, little-endian.
/// - `"loongson3"`: MIPS Loongson-III CPU.
///
/// ```toml
/// arch = "arm64"
/// ```
///
/// `name` - Name of the device
/// ---------------------------
///
/// The human-friendly name of the device.
///
/// ```toml
/// name = "Raspberry Pi 9 Model B"
/// ```
///
/// `of_compatible` - `compatible` Property in the Device Tree (Optional)
/// ---------------------------------------------------------------------
///
/// The most relevant string in the `/compatible` property defined in the root of the device tree file. Typically it is the first value of the entry.
///
/// If this device does not have a device tree, or the device tree file does not have `compatible` property defined in its root, this field can be skipped.
///
/// For example, suppose the device tree file of the “Raspberry Pi 9 Model B” has the following definition:
///
/// ```dts
/// / {
/// compatible = "raspberrypi,9-model-b", "brcm,bcm9999";
/// }
/// ```
///
/// The value used here would be `"raspberrypi,9-model-b"`.
/// ```toml
/// of_compatible = "raspberrypi,9-model-b"
/// ```
///
/// `bsp_packages` - List of mandatory BSP packages
/// ------------------------------------------------
///
/// A list of package names to be installed in addition to the standard system distribution.
///
/// Installation of BSP packages will be performed after all mountable partitions in this device are mounted, so that scripts in the packages can access these partitions.
///
/// <div class="warning">
/// The package names can not be checked for validity. Please make sure all of the names are correct.
/// </div>
///
/// ```toml
/// bsp_packages = ["linux+kernel+rpi64+rpi9", "rpi-firmware-boot"]
/// ```
///
/// `initrdless` - Booting without Init Ramdisk (Optional)
/// -------------------------------------------------------
///
/// A boolean value describes whether the device boots without an init ramdisk. Typically this is useful for a variety of embedded devices.
///
/// Default is `false`, can be skipped. If set to `true`, then the following thing will happen:
///
/// - The filesystem table `/etc/fstab` will be generated using the unique identifiers of the partition (`PARTUUID`), rather than unique identifiers of the filesystem (`UUID`).
///
/// ```toml
/// initrdless = true
/// ```
///
/// `kernel_cmdline` - Kernel command line (Optional)
/// -------------------------------------------------
///
/// List of strings representing the kernel command line. Can not contain white spaces, and cannot contain `root=` argument.
///
/// The `root=` command line is automatically generated using either `PARTUUID` or `UUID`, depending on whether the device boots without an initrd image.
///
/// The final kernel command line will be `root=` argument concatenated with rest of the arguments.
///
/// If this field is defined, the post installation script and any bootloader scripts will be able to reference it with `$KERNEL_CMDLINE`.
///
/// If you want to generate the kernel command line yourself with a script, please skip this field.
///
/// ```toml
/// # The final command line $KERNEL_CMDLINE:
/// # "root=PARTUUID=01234567-89ab-cdef-0123-456789abcdef console=ttyS0,115200 console=tty0 rw fsck.repair=yes"
/// kernel_cmdline = ["console=ttyS0,115200", "console=tty0", "rw", "fsck.repair=yes"]
/// ```
///
/// `[sizes]` - Image sizes for each variant
/// ----------------------------------------
///
/// An object describes the image size for each distribution variant: `base`, `desktop` and `server`.
///
/// <div class="warning">
/// Make sure the sizes defined are large enough to contain the OS and installed BSP packages.
/// </div>
///
/// The images will be automatically expanded to the size of the medium during the first boot.
///
/// ```toml
/// [sizes]
/// base = 6144
/// desktop = 22500
/// server = 6144
/// ```
///
/// `partition_map` - Partition Table Type
/// --------------------------------------
///
/// Type of the partition table used in the OS image.
///
/// Possible values:
///
/// - `mbr` or `dos`: MBR Partition Table. Can have up to 4 partitions.
/// - `gpt`: GUID Partition Table. Can have up to 128 partitions. Most bootloaders supports GPT.
///
/// ```toml
/// partition_map = "gpt"
/// ```
///
/// `num_partitions` - Number of the partitions
/// -------------------------------------------
///
/// A positive integer. Defines the number of the partitions in the OS image.
///
/// ```toml
/// num_partitions: 2
/// ```
///
/// `[[partition]]` - List of Partitions
/// ------------------------------------
///
/// A list of objects describes the partitions in the OS image. Refer to the [`PartitionSpec`] for details.
///
/// ```toml
/// [[partition]]
/// no = 1
/// type = "esp"
/// usage = "boot"
/// size = 614400
/// mountpoint = "/efi"
/// filesystem = "fat32"
/// label = "Boot"
/// fs_label = "Boot"
///
/// [[partition]]
/// no = 2
/// type = "linux"
/// size = 0
/// mountpoint = "/"
/// filesystem = "ext4"
/// usage = "rootfs"
/// fs_label = "AOSC OS"
/// ```
///
/// `[[bootloader]]` - List of Bootloaders to be embedded (Optional)
/// ----------------------------------------------------------------
///
/// A list of objects describes bootloaders to be applied onto the OS image. Refer to [`BootloaderSpec`] for details.
///
/// ```toml
/// [[bootloader]]
/// type = "flash_partition"
/// path = "/usr/lib/u-boot/rk3588-orange-pi-4-ultra-idbloader.img"
/// partition = 1
///
/// [[bootloader]]
/// type = "flash_partition"
/// path = "/usr/lib/u-boot/rk3588-orange-pi-4-ultra-u-boot.itb"
/// partition = 2
///
/// [[bootloader]]
/// type = "script"
/// name = "finish-bootloaders.sh"
/// ```
///
/// Process of building images
/// ==========================
///
/// 1. This device gets selected in the registry.
/// 2. An OS image is created with specified size, and is attached to a loop device.
/// 3. The image is partitioned.
/// 4. Partitions with filesystem assigned to them is formatted.
/// 5. Filesystems with a mountpoint will be mounted.
/// 6. The standard system distribution is installed to the target filesystem, and `/etc/fstab` is generated.
/// 7. BSP packages is installed.
/// 8. The [post-installation script](#post-installation) is run.
/// 9. The [bootloaders] will be applied, if defined in the spec file.
/// 10. The image is unmounted, detached from the loop device, and is compressed to the output directory.
///
/// Post Installation
/// =================
///
/// An optional post installation script can be run after:
///
/// - All of the filesystems with a mount point are mounted.
/// - The standard system distribution is installed.
/// - All of the BSP packages gets installed.
/// - `/etc/fstab` is generated.
/// - A user is set up.
///
/// The post installation script will be run within the target OS image. The script name must be one of:
///
/// - `postinst.bash`
/// - `postinst.sh`
/// - `postinst` (The shebang is not interpreted, thus must be a shell script)
///
/// Available defined variables
/// ---------------------------
///
/// There are a few variables pre-defined in the environment to aid your setup process:
///
/// - `DEVICE_ID`: Device ID.
/// - `DEVICE_COMPATIBLE`: `of_compatible` field defined in the device specification. Empty if not defined.
/// - `LOOPDEV`: The loop device this OS image is attached on.
/// - `NUM_PARTITIONS`: Number of the partitions.
/// - `ROOTPART`: The index of the root partition.
/// - `DISKLABEL`: Either `mbr` or `gpt`.
/// - `DISKUUID`: UUID of the partition table.
///
/// Either a 32-bit hexadecimal integer or an UUID (Same as the output of `blkid`).
/// - `KERNEL_CMDLINE`: Full kernel command line with `root=` argument. Empty if not defined in the spec file.
/// - `PARTx_PARTUUID`: Partition UUID of the xth partition.
///
/// Same as the output of `blkid`, can be used directly with `root=PARTUUID=` argument.
/// - `PARTx_FSUUID`: Filesystem UUID of the xth partition.
///
/// Same as the output of `blkid`, can be used directly with `root=UUID=` argument. Empty if this partition does not contain a filesystem.
/// - `BOOT_PARTUUID`, `BOOT_FSUUID`: Partition and Filesystem UUID for the boot partition, if one is found.
/// - `ROOT_PARTUUID`, `ROOT_FSUUID`: Partition and Filesystem UUID for the root partition.
///
/// Examples
/// ========
///
/// Please refer to the device registry directory in the project for examples.
///
/// [device registry]: crate::registry::DeviceRegistry
/// [bootloaders]: crate::bootloader::BootloaderSpec
/// [bootloader scripts]: crate::bootloader::BootloaderSpec#usage
#[derive(Clone, Debug, Deserialize)]
#[allow(dead_code)]
pub struct DeviceSpec {
/// Unique ID of the device. Can be any combination of letters, digits, hyphen `"-"` and underscore (`"_"`).
pub id: String,
/// Optional aliases to identify the exact device. Can be any combination of letters, digits, hyphen `"-"` and underscore (`"_"`).
pub aliases: Option<Vec<String>>,
/// The distribution wich will be installed on this device.
///
/// Possible values:
///
/// - `aosc`: AOSC OS.
#[serde(default)]
pub distro: Distro,
/// Vendor of the device. Can be any combination of letters, digits, hyphen `"-"` and underscore (`"_"`).
pub vendor: String,
/// CPU Architecture of the device.
///
/// Possible values:
///
/// - `amd64`
/// - `arm64`
/// - `loongarch64`
/// - `loongson3`
/// - `ppc64el`
/// - `riscv64`
/// - `mips64r6el`
pub arch: DeviceArch,
/// Vendor of the SoC platform, optional, currently not used.
/// The name must present in arch/$ARCH/boot/dts in the kernel tree.
pub soc_vendor: Option<String>,
/// Full name of the device for humans.
pub name: String,
/// Model name of the device, if it is different than the full name.
pub model: Option<String>,
/// The most relevant value of the `compatible`` property defined in the root
/// of the device tree, if present. Otherwise just skip this.
///
/// For example, the device tree file of Raspberry Pi 5B defines the following:
/// ```dts
/// / {
/// compatible = "raspberrypi,5-model-b", "brcm,bcm2712";
/// }
/// ```
/// In this case, the value would be `"raspberrypi,5-model-b"`.
#[serde(rename = "compatible")]
pub of_compatible: Option<String>,
/// List of BSP packages to be installed.
/// Must be a list of valid package names, no checks are performed.
pub bsp_packages: Vec<String>,
/// Whether the device boots without an initrd image.
/// Useful for embedded systems (most of devices targeted by this
/// project are embedded systems, aren't they).
///
/// If set to true, the following thing(s) will happen:
/// - Generated fstab will use PARTUUID instead of filesystem UUID,
/// since the kernel does not support using `UUID=` to specify root
/// device if initrd is not being used.
#[serde(default)]
pub initrdless: bool,
/// Kernel command line.
/// Must be a list of strings, and `root=` must not present in this list (it is automatically generated).
pub kernel_cmdline: Option<Vec<String>>,
/// The partition map used for the image.
///
/// Possible values:
///
/// - `mbr` or `dos`
/// - `gpt`
pub partition_map: PartitionMapType,
/// Number of the partitions.
pub num_partitions: u32,
/// Size of the image for each variant, in MiB.
///
/// ### Example
///
/// ```toml
/// [size]
/// base = 6144
/// desktop = 22528
/// server = 6144
/// ```
pub size: ImageVariantSizes,
/// Partitions in the image. Refer to [`PartitionSpec`] for details.
///
/// Due to how lists of objects are represented in TOML, the singular "partition" is explicitly allowed.
///
/// ### Example
///
/// ```toml
/// [[partition]]
/// num = 1
/// size = 614400
/// type = "esp"
/// filesystem = "fat32"
/// ...
///
/// [[partition]]
/// num = 2
/// size = 0
/// type = "linux"
/// filesystem = "ext4"
/// ...
/// ```
// Can be `[[partition]]` to avoid awkwardness.
#[serde(alias = "partition")]
pub partitions: Vec<PartitionSpec>,
/// Actions to apply bootloaders. Refer to [`BootloaderSpec`] for details.
///
/// Due to how lists of objects are represented in TOML, the singular "bootloader" is explicitly allowed.
///
/// ### Example
///
/// ```toml
/// [[bootloader]]
/// type = "script"
/// script = "apply-bootloader.sh"
///
/// [[bootloader]]
/// type = "script"
/// script = "apply-bootloader2.sh"
/// ```
#[serde(alias = "bootloader")]
pub bootloaders: Option<Vec<BootloaderSpec>>,
/// Path to the device.toml.
///
/// This field is ignored during deserialization, and is automatically filled.
#[serde(skip_deserializing)]
pub file_path: PathBuf,
}
#[derive(Clone, Debug, Deserialize)]
pub struct ImageVariantSizes {
pub base: u64,
pub desktop: u64,
pub server: u64,
}
#[allow(dead_code)]
pub struct PartitionMapData {
pub uuid: String,
/// Data for each partition
pub data: HashMap<u32, PartitionData>,
}
#[derive(Clone)]
pub struct PartitionData {
pub num: u32,
pub part_uuid: String,
pub fs_uuid: Option<String>,
}
impl Default for ImageVariantSizes {
fn default() -> Self {
ImageVariantSizes {
base: 5120,
desktop: 25600,
server: 6144,
}
}
}
impl DeviceSpec {
pub fn from_path(file: &Path) -> Result<Self> {
if file.file_name() != Some(OsStr::new("device.toml")) {
bail!(
"Filename in the path must be 'device.toml', got '{}'",
file.display()
)
};
let content = fs::read_to_string(file)
.context(format!("Unable to read file '{}'", &file.to_string_lossy()))?;
let mut device: DeviceSpec = toml::from_str(&content).context(format!(
"Unable to treat '{}' as an entry of the registry",
&file.to_string_lossy()
))?;
device.file_path = file.canonicalize()?;
Ok(device)
}
pub fn check(&self) -> Result<()> {
let path: &Path = self.file_path.as_ref();
let dirname = path
.parent()
.context("Failed to get the directory containing the device spec file")?;
let mut strs_to_chk = vec![&self.id, &self.vendor];
if let Some(aliases) = &self.aliases {
aliases.iter().for_each(|s| strs_to_chk.push(s));
}
if let Some(c) = &self.of_compatible {
strs_to_chk.push(c)
}
for field in &strs_to_chk {
if !field.is_ascii() {
bail!("'{}' contains non-ASCII characters", field);
}
if field.contains(FORBIDDEN_CHARS) {
bail!(
"'{}' contains one of the following characters:\n{:?}",
field,
FORBIDDEN_CHARS
);
}
}
let mut strs_to_chk = vec![&self.name];
if let Some(m) = &self.model {
strs_to_chk.push(m);
}
for field in &strs_to_chk {
if field.contains(FORBIDDEN_CHARS) {
bail!(
"'{}' contains one of the following characters:\n{:?}",
field,
FORBIDDEN_CHARS
);
}
}
if self.partitions.is_empty() {
bail!("No partition defined for this device");
}
// Check consistency
if self.num_partitions != self.partitions.len() as u32 {
bail!(
"Please update the num_partitions field: should be {}, got {}",
self.partitions.len(),
self.num_partitions
);
}
// Can't have too many partitions
let len = self.partitions.len();
match self.partition_map {
PartitionMapType::MBR => {
if len > 4 {
bail!("MBR partition map can contain up to 4 partitions");
}
}
PartitionMapType::GPT => {
if len > 128 {
bail!("Too many partitions for GPT");
}
}
}
// Some devices may not have a boot partition.
// Some devices may use MBR partition map.
// Let's make the root partition the only requirement here.
let mut root_part = None;
let mut last_partition_num = 0;
for partition in &self.partitions {
if let Some(start) = partition.start_sector {
if self.partition_map == PartitionMapType::GPT && start <= 33 {
bail!("Starting sector of partition {} overlaps the partition table itself.", partition.num);
}
}
if partition.part_type == PartitionType::Swap {
bail!("Swap partitions are not allowed on raw images.");
}
if partition.num == 0 {
bail!("Partition numbers should start from 1.");
}
if partition.num < last_partition_num {
bail!("Please keep the partitions in order");
}
if partition.num == last_partition_num {
bail!("Duplicate partition number: {}", partition.num);
}
if partition.usage == PartitionUsage::Rootfs {
if root_part.is_some() {
bail!("More than one root partition defined");
}
root_part = Some(partition);
if partition.mountpoint != Some("/".to_owned()) {
bail!("Sorry, but for now root partition must have a mountpoint '/'.")
}
}
if let Some(l) = &partition.label {
if self.partition_map == PartitionMapType::MBR {
bail!("MBR partition map does not allow partition labels, found one in partition {}", partition.num);
}
if l.len() > 35 {
bail!("Label for partition {} exceeds the 35-character limit", partition.num);
}
}
last_partition_num = partition.num;
partition.filesystem.check(&partition.fs_label)?;
}
if root_part.is_none() {
bail!("No root partition defined");
}
if let Some(bootloaders) = &self.bootloaders {
for bl in bootloaders {
match bl {
BootloaderSpec::Script { name } => {
let script_path = dirname.join(name);
if !script_path.is_file() {
bail!("Script '{}' not found within the same directory as the device.toml", &name);
}
}
BootloaderSpec::FlashPartition { path: _, partition } => {
if let Some(p) =
self.partitions.get(*partition as usize)
{
if p.filesystem != FilesystemType::None {
bail!("A bootloader tries to write to partition {} which already contains an active filesystem.", p.num);
}
} else {
bail!("Partition {} specified by a bootloader is not found.", partition);
}
}
BootloaderSpec::FlashOffset { path: _, offset } => {
// Anything must start from at least LBA 34.
if self.partition_map == PartitionMapType::GPT
&& *offset < 512 * 34
{
bail!("A bootloader tries to overlap the partition table. It must start from at least 0x4400 (17408), or LBA 34.");
}
}
}
}
}
Ok(())
}
pub fn gen_kernel_cmdline(&self, pm_data: &PartitionMapData) -> Result<String> {
let str = if let Some(cmdline) = self.kernel_cmdline.as_ref() {
let mut str = String::new();
let root_part = self.partitions.iter().find(|x| x.usage == PartitionUsage::Rootfs).context("Unable to find a root filesystem to generate kernel command line")?;
let root_param = if self.initrdless {
format!(
"root=PARTUUID={} ",
&pm_data.data
.get(&root_part.num)
.as_ref()
.unwrap()
.part_uuid
)
} else {
format!(
"root=UUID={} ",
&pm_data.data
.get(&root_part.num)
.as_ref()
.unwrap()
.fs_uuid
.as_ref()
.unwrap()
)
};
str += &root_param;
str += &cmdline.join(" ");
str
} else {
String::new()
};
Ok(str)
}
}
impl ImageVariantSizes {
pub fn get_variant_size(&self, variant: &ImageVariant) -> u64 {
match variant {
ImageVariant::Base => self.base,
ImageVariant::Desktop => self.desktop,
ImageVariant::Server => self.server,
}
}
}
impl DeviceArch {
pub fn get_native_arch() -> Option<&'static Self> {
use std::env::consts::ARCH;
match ARCH {
"x86_64" => Some(&Self::Amd64),
"aarch64" => Some(&Self::Arm64),
"loongarch64" => Some(&Self::LoongArch64),
"mips64" => {
if cfg!(target_arch = "mips64r6") {
Some(&Self::Mips64r6el)
} else {
Some(&Self::Loongson3)
}
}
"riscv64" => Some(&Self::Riscv64),
// TODO ppc64el needs work.
"powerpc64" => Some(&Self::Ppc64el),
_ => None,
}
}
pub fn is_native(&self) -> bool {
if let Some(a) = Self::get_native_arch() {
if a == self {
return true;
}
}
false
}
pub fn get_qemu_binfmt_names(&self) -> &str {
match self {
Self::Amd64 => "qemu-x86_64",
Self::Arm64 => "qemu-aarch64",
Self::LoongArch64 => "qemu-loongarch64",
Self::Ppc64el => "qemu-ppc64le",
Self::Loongson3 => "qemu-mips64el",
Self::Riscv64 => "qemu-riscv64",
Self::Mips64r6el => "qemu-mips64el",
}
}
}
impl ImageContext<'_> {
pub fn partition_gpt(&self, img: &Path) -> Result<PartitionMapData> {
// The device must be opened write-only to write partition tables
// Otherwise EBADF will be throwed
let mut fd = File::options().write(true).open(img)?;
// Use ioctl() to get sector size of the loop device
// NOTE sector sizes can not be assumed
let sector_size = gptman::linux::get_sector_size(&mut fd)?;
debug!(
"Got sector size of the loop device '{}': {} bytes",
img.display(),
sector_size
);
let rand_uuid = Uuid::new_v4();
// NOTE UUIDs in GPT are like structs, they are "Mixed-endian."
// The first three components are little-endian, and the last two are big-endian.
// e.g. 01020304-0506-0708-090A-0B0C0D0E0F10 must be written as:
// LE LE LE
// vvvvvvvvvvv vvvvv vvvvv
// 0000: 04 03 02 01 06 05 08 07
// 0008: 09 0A 0B 0C 0D 0E 0F 10
// ^^^^^^^^^^^^^^^^^^^^^^^
// Big Endian
// Uuid::to_bytes_le() produces the correct byte array.
let disk_guid = rand_uuid.to_bytes_le();
let mut new_table = GPT::new_from(&mut fd, sector_size, disk_guid)
.context("Unable to create a new partition table")?;
let mut parts_data: HashMap<u32, PartitionData> = HashMap::new();
assert!(new_table.header.disk_guid == disk_guid);
// 1MB aligned
new_table.align = 1048576 / sector_size;
self.info(format!(
"Created new GPT partition table on {}:",
img.display()
));
let size_in_lba = new_table.header.last_usable_lba;
self.info(format!("UUID: {}", &rand_uuid));
self.info(format!("Total LBA: {}", size_in_lba));
let num_partitions = self.device.num_partitions;
for partition in &self.device.partitions {
if partition.num == 0 {
bail!("Partition number must start from 1.");
}
let rand_part_uuid = Uuid::new_v4();
let unique_partition_guid = rand_part_uuid.to_bytes_le();
let free_blocks = new_table.find_free_sectors();
debug!("Free blocks remaining: {:#?}", &free_blocks);
let last_free = free_blocks
.last()
.context("No more free space available for new partitions")?;
let size = if partition.size_in_sectors != 0 {
partition.size_in_sectors
} else {
if partition.num != num_partitions {
bail!("Max sized partition must stay at the end of the table.");
}
if last_free.1 < 1048576 / sector_size {
bail!("Not enough free space to create a partition");
}
last_free.1 - 1
};
let partition_type_guid = partition.part_type.to_uuid()?.to_bytes_le();
let starting_lba = if let Some(start) = partition.start_sector {
start
} else if partition.num == 1 {
// 1MB grain size to reserve some space for bootloaders
1048576 / sector_size as u64
} else {
new_table.find_first_place(size).context(format!(
"No suitable space found for partition:\n{:?}.",
&partition
))?
};
let ending_lba = starting_lba + size - 1;
let name = if let Some(name) = partition.label.to_owned() {
name
} else {
"".into()
};
let partition_name = name.as_str();
self.info(format!(
"Creating an {:?} partition with PARTUUID {}:",
partition.part_type, rand_part_uuid
));
self.info(format!(
"Size in LBA: {}, Start = {}, End = {}",
size, starting_lba, ending_lba
));
let part = GPTPartitionEntry {
partition_type_guid,
unique_partition_guid,
starting_lba,
ending_lba,
attribute_bits: 0,
partition_name: partition_name.into(),
};
new_table[partition.num] = part;
parts_data.insert(
partition.num,
PartitionData {
num: partition.num,
part_uuid: rand_part_uuid.to_string(),
fs_uuid: None,
},
);
}
self.info("Writing changes ...");
// Protective MBR is written for compatibility.
// Plus, most partitioning program will not accept pure GPT
// configuration, they will warn about missing Protective MBR.
GPT::write_protective_mbr_into(&mut fd, sector_size)?;
new_table.write_into(&mut fd)?;
fd.sync_all()?;
let pm_data = PartitionMapData {
uuid: rand_uuid.to_string(),
data: parts_data,
};
Ok(pm_data)
}
pub fn partition_mbr(&self, img: &Path) -> Result<PartitionMapData> {
let mut fd = File::options().write(true).open(img)?;
let sector_size =
TryInto::<u32>::try_into(gptman::linux::get_sector_size(&mut fd)?)
.unwrap_or(512);
let random_id: u32 = rand::random();
let disk_signature = random_id.to_le_bytes();
let disk_signature_str = format!("{:08x}", random_id);
let mut new_table = MBR::new_from(&mut fd, sector_size, disk_signature)?;
let mut parts_data: HashMap<u32, PartitionData> = HashMap::new();
self.info(format!("Created a MBR table on {}:", img.display()));
// Human readable format
self.info(format!(
"Disk signature: {:X}-{:X}",
(random_id >> 16) as u16,
(random_id & 0xffff) as u16
));
for partition in &self.device.partitions {
if partition.num == 0 {
bail!("Partition number must start from 1.");
}
if partition.num > 4 {
bail!("Extended and logical partitions are not supported.");
}
let free_blocks = new_table.find_free_sectors();
debug!("Free blocks remaining: {:#?}", &free_blocks);
let last_free = free_blocks
.last()
.context("No more free space available for new partitions")?;
let idx = TryInto::<usize>::try_into(partition.num)
.context("Partition number exceeds the limit")?;
let sectors = if partition.size_in_sectors != 0 {
TryInto::<u32>::try_into(partition.size_in_sectors)
.context("Partition size exceeds the limit of MBR")?
} else {
// Make sure it is the last partition.
if partition.num != self.device.num_partitions {
bail!("Max sized partition must stay at the end of the table.");
}
last_free.1 - 1
};
if sectors < 1048576 / sector_size {
bail!("Not enough free space to create a partition");
}
let starting_lba = if let Some(start) = partition.start_sector {
TryInto::<u32>::try_into(start)
.context("Partition size exceeds the limit of MBR")?
} else if partition.num == 1 {
// 1MB grain size to reserve some space for bootloaders
1048576 / sector_size as u32
} else {
new_table.find_first_place(sectors).context(format!(
"No suitable free space found for partition: {:?}",
&partition
))?
};
let boot = if partition.usage == PartitionUsage::Boot {
mbrman::BOOT_ACTIVE
} else {
mbrman::BOOT_INACTIVE
};
let sys = partition.part_type.to_byte()?;
self.info(format!("Creating an {:?} partition:", &partition.part_type));
self.info(format!(
"Size in LBA: {}, Start = {}, End = {}",
sectors,
starting_lba,
starting_lba + sectors - 1
));
let part = MBRPartitionEntry {
boot,
first_chs: CHS::empty(),
sys,
last_chs: CHS::empty(),
starting_lba,
sectors,
};
new_table[idx] = part;
parts_data.insert(
partition.num,
PartitionData {
num: partition.num,
part_uuid: format!("{}-{:02x}", &disk_signature_str, idx),
fs_uuid: None,
},
);
}
self.info("Writing the partition table ...");
new_table.write_into(&mut fd)?;
fd.sync_all()?;
let pm_data = PartitionMapData {
uuid: disk_signature_str,
data: parts_data,
};
Ok(pm_data)
}
pub fn write_spec_script(
&self,
loopdev: &dyn AsRef<Path>,
rootpart: &dyn AsRef<Path>,
container: &dyn AsRef<Path>,
pm_data: &PartitionMapData,
) -> Result<()> {
let mut script = format!(
r#"DEVICE_ID='{0}'
DEVICE_COMPATIBLE='{1}'
LOOPDEV='{2}'
NUM_PARTITIONS='{3}'
ROOTPART='{4}'
DISKLABEL='{5}'
DISKUUID='{6}'
KERNEL_CMDLINE='{7}'
"#,
self.device.id,
&self.device.of_compatible.clone().unwrap_or("".to_string()),
loopdev.as_ref().to_string_lossy(),
self.device.num_partitions,
rootpart.as_ref().to_string_lossy(),
&self.device.partition_map.to_string().to_lowercase(),
&pm_data.uuid,
&self.device.gen_kernel_cmdline(pm_data)?
);
for part in &self.device.partitions {
let part_data = pm_data.data.get(&part.num).context(format!(
"Unable to get partition data for partition {}",
part.num
))?;
assert_eq!(part.num, part_data.num);
script += &format!(
"PART{0}_PARTUUID='{1}'\n",
part_data.num, part_data.part_uuid,
);
if part.usage == PartitionUsage::Rootfs {
script +=
&format!("ROOT_PARTUUID=\"$PART{0}_PARTUUID\"\n", part.num);
} else if part.usage == PartitionUsage::Boot {
script +=
&format!("BOOT_PARTUUID=\"$PART{0}_PARTUUID\"\n", part.num);
}
if part.part_type == PartitionType::EFI {
script +=
&format!("EFI_PARTUUID=\"$PART{0}_PARTUUID\"\n", part.num);
}
// We might not have a filesystem UUID under some circumstances
if let Some(fsuuid) = &part_data.fs_uuid {
script +=
&format!("PART{0}_FSUUID='{1}'\n", part_data.num, &fsuuid);
if part.usage == PartitionUsage::Rootfs {
script += &format!(
"ROOT_FSUUID=\"$PART{0}_FSUUID\"\n",
part.num
);
} else if part.usage == PartitionUsage::Boot {
script += &format!(
"BOOT_FSUUID=\"$PART{0}_FSUUID\"\n",
part.num
);
}
if part.part_type == PartitionType::EFI {
script += &format!(
"EFI_FSUUID=\"$PART{0}_FSUUID\"\n",
part.num
);
}
}
}
debug!("Script content: \n{}", &script);
let path = container.as_ref().join("tmp/spec.sh");
let mut fd = File::options()
.create(true)
.write(true)
.truncate(true)
.open(&path)?;
fd.write_all(script.as_bytes())?;
fd.flush()?;
fd.sync_all()?;
Ok(())
}
pub fn generate_fstab(
&self,
pm_data: &PartitionMapData,
container: &dyn AsRef<Path>,
) -> Result<()> {
self.info("Generating /etc/fstab ...");
let mut content = String::from("\n# ---- Auto generated by mkrawimg ----\n");
for partition in &self.device.partitions {
if let Some(mountpoint) = &partition.mountpoint {
let part_data =
pm_data.data.get(&partition.num).context(format!(
"Unable to get partition data for partition {}",
partition.num
))?;
let src = if self.device.initrdless {
format!("PARTUUID=\"{0}\"", &part_data.part_uuid)
} else {
format!("UUID=\"{0}\"", &part_data.fs_uuid.as_ref().context("Partition with a mountpoint must have a valid filesystem")?)
};
// dst = mountpoint
// `genfstab(8)` uses the options field in `/proc/mounts`, which is the expanded result from `defaults`.
let options = if let Some(opts) = partition.mount_opts.as_ref() {
opts.join(",")
} else {
"defaults".to_owned()
};
let fsck_passno = if partition.usage == PartitionUsage::Rootfs {
1
} else {
2
};
let entry = format!(
"{0}\t{1}\t{2}\t{3}\t{4}\t{5}\n",
&src,
&mountpoint,
&partition.filesystem.get_os_fstype()?,
&options,
0,
fsck_passno
);
content += &entry;
} else {
// We can not generate fstab entry for partitions without a mountpoint
continue;
}
}
let fstab_path = container.as_ref().join("etc/fstab");
let mut fstab_fd = File::options()
.truncate(false)
.append(true)
.open(&fstab_path)?;
fstab_fd.write_all(content.as_bytes())?;
fstab_fd.flush()?;
fstab_fd.sync_all()?;
Ok(())
}
pub fn set_hostname(&self, container: &dyn AsRef<Path>) -> Result<()> {
self.info("Setting up hostname ...");
let rand_id: u32 = rand::random();
let hostname = format!(
"{:?}-{}-{:08x}",
&self.device.distro, &self.device.id, rand_id
);
self.info(format!("Hostname: {}", &hostname));
let hostname_path = container.as_ref().join("etc/hostname");
let mut hostname_fd = File::options()
.truncate(true)
.write(true)
.create(true)
.open(hostname_path)?;
hostname_fd.write_all(hostname.as_bytes())?;
hostname_fd.flush()?;
hostname_fd.sync_all()?;
let hosts_entries = format!("\n127.0.0.1\t{0}\n::1\t{0}\n", hostname);
let hosts_fd = container.as_ref().join("etc/hosts");
let mut hosts_fd = File::options().append(true).create(true).open(hosts_fd)?;
hosts_fd.write_all(hosts_entries.as_bytes())?;
hosts_fd.flush()?;
hosts_fd.sync_all()?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use log::info;
use owo_colors::OwoColorize;
#[test]
fn test_from_path() -> Result<()> {
env_logger::builder()
.filter_level(log::LevelFilter::Debug)
.build();
let walker = walkdir::WalkDir::new("devices").max_depth(4).into_iter();
for e in walker {
let e = e?;
if e.path().is_dir()
|| e.path().file_name() != Some(OsStr::new("device.toml"))
{
continue;
}
info!("Parsing {} ...", e.path().display().bright_cyan());
let device = DeviceSpec::from_path(e.path())?;
info!("Parsed device:\n{:#?}", device);
}
Ok(())
}
}